大数据是指无法在现有时间概念框架中用传统的数字技术工具进行感知、采集、管理、处理和服务的海量数据集合,具有容量大、产生速度快、类型繁多、信息价值大、冗余信息多四个特征。
绝大数公司建立数仓之初是没有考虑好数据治理怎么做的,因为数据部门刚开始成立,必然要有一些“数据驱动”的成果,而数据治理不能很好的体现这些业绩。所以,都是在业务发展的过程中,逐渐遇到了一些数据问题,才考虑做这件事的。
对于数据仓库项目而言,更需要的是一套策略,一套组合拳,不仅仅需要技术卓越、业务理解,还需要需求方、业务方在整体架构和流程上的配合。
数据分析师想要加强数据洞察能力,就得多积累分析经验,针对具体业务问题,收集业务动作,多复盘,这样才能认识得越来越深入。每次具体问题来了,才有丰富的弹药库可用。
高质量的计算环境(包括服务器、操作系统、存储和数据库)对于任何使用大量数据的应用程序的成功都是至关重要的。
理论上监督和控制也可以不用数据,比如传统的车间主任、生产队长、监考老师,都是一线现场监督与控制。
所谓“屋漏偏逢连夜雨”,就是这个局面。此时,想要用数据描述问题,容易,树个标杆就能看出差距。想用数据诊断问题,就得突破上边层层险阻,争取业务的支持和老板的理解,才能见效。这是从数据到落地的必经之路。
很长时间以来,大数据已成为各种规模和形式的企业和组织赖以运转的支点。分析工具和大数据管理的集成一直是企业正在采用的数字化转型技术的标志。