在采集美女站时,需要对关键词进行分词,最终采用的是python的结巴分词方法。
中文分词是中文文本处理的一个基础性工作,结巴分词利用进行中文分词。
其基本实现原理有三点:
1.基于Trie树结构实现高效的词图扫描,生成句子中汉字所有可能成词
jieba(结巴)是一个强大的分词库,完美支持中文分词,本文对其基本用法做一个简要总结。
特点支持三种分词模式:精确模式,试图将句子最精确地切开,适合文本分析;全模式,把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义;
前言
大家都知道,英文的分词由于单词间是以空格进行分隔的,所以分词要相对的容易些,而中文就不同了,中文中一个句子的分隔就是以字为单位的了,而所谓的正向最大匹配和逆向最大匹配便是一种分词匹配的方法,这里以词典匹配说明。
最大匹配算法是自然语言
基于 python django
源码
前期准备
安装库:pip install django-haystack
pip install whoosh
pip install jieba如果pip 安装超时,可配置pip国内源下载,如下:p
在讨论技术前先卖个萌,吃货的世界你不懂~~众成翻译的文章有 tag,用户可以基于 tag 来快速筛选感兴趣的文章,文章也可以依照 tag 关联来进行相关推荐。但是现在众成翻译的 tag 是在推荐文章的时候设置的,都是英文的,而且人工设置难免